博客
关于我
L121买卖股票的最佳时机
阅读量:215 次
发布时间:2019-02-28

本文共 2106 字,大约阅读时间需要 7 分钟。

买卖股票的最佳时机

问题分析

给定一个数组,数组中的每个元素表示某只股票在该天的价格。我们需要找出一笔最优的交易,即买入和卖出股票一次,计算能获得的最大利润。注意,只能完成一笔交易,且卖出价格必须大于买入价格。如果没有这样的交易,利润为0。

方法一:暴力方法

暴力方法通过两重循环遍历所有可能的买入和卖出组合,计算每一笔交易的利润,找出最大值。这种方法的时间复杂度为O(n²),适用于小规模数据,但对于大数组效率较低。

public int maxProfit(int[] prices) {    int len = prices.length;    if (len == 0) return 0;    int max = Integer.MIN_VALUE;    for (int i = 0; i < len; i++) {        for (int j = i; j < len; j++) {            if (max < prices[j] - prices[i]) {                max = prices[j] - prices[i];            }        }    }    return max;}

方法二:记录最小值

通过一次遍历记录最小价格,然后在遍历过程中计算当前价格与最小价格的差值,找出最大利润。这种方法的时间复杂度为O(n),空间复杂度为O(1),效率较高。

public int maxProfit(int[] prices) {    if (prices == null || prices.length == 0) return 0;    int minPrice = Integer.MAX_VALUE;    int maxProfit = 0;    for (int i = 0; i < prices.length; i++) {        if (prices[i] < minPrice) {            minPrice = prices[i];        }        int currentProfit = prices[i] - minPrice;        if (currentProfit > maxProfit) {            maxProfit = currentProfit;        }    }    return maxProfit;}

方法三:动态规划

使用动态规划来解决问题。我们定义两个状态:dp[i][0]表示到第i天结束时不持有股票的现金金额;dp[i][1]表示到第i天结束时持有股票的现金金额。通过状态转移,计算最终的最大利润。

public int maxProfit(int[] prices) {    if (prices == null || prices.length == 0) return 0;    int len = prices.length;    if (len < 2) return 0;    int[][] dp = new int[len][2];    dp[0][0] = 0;    dp[0][1] = -prices[0];    for (int i = 1; i < len; i++) {        dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);        dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);    }    return dp[len - 1][0];}

方法四:优化空间复杂度

通过压缩动态规划的空间复杂度,只需维护两个变量,分别表示前一天的不持有和持有股票的情况。

public int maxProfit(int[] prices) {    if (prices == null || prices.length == 0) return 0;    int len = prices.length;    if (len < 2) return 0;    int hold = -prices[0];    int cash = 0;    for (int i = 1; i < len; i++) {        int newHold = Math.max(hold, hold + prices[i]);        int newCash = Math.max(cash, -prices[i]);        hold = newHold;        cash = newCash;    }    return cash;}

总结

通过上述方法,我们可以高效地解决买卖股票的最佳时机问题。记录最小值和动态规划方法均以O(n)时间复杂度和O(1)空间复杂度,适用于大规模数据处理。

转载地址:http://cjvp.baihongyu.com/

你可能感兴趣的文章
NIO基于UDP协议的网络编程
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>